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ABSTRACT: The power grid needs to predict 

future daily load values for the daily planning of 

cascade hydropower stations. To achieve this, short-

term load forecasting is done. In this article, a power 

grid load forecasting method based on a chaotic 

Simple Recurrent Unit (SRU) neural network is 

proposed. The method involves using the C-C 

method to calculate the time delay t and embedding 

dimension m of the load time series, then 

reconstructing the phase space. After that, it 

combines with the SRU neural network to predict 

future load values. The model was simulated and 

verified using the power grid load data of the Hubei 

Power Grid in 2015. The results indicate that the 

proposed model has a good fitting effect. 
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I. INTRODUCTION 

Short-term load forecasting is crucial for 

the safe and stable operation of the power system. 

Its main objective is to predict the electricity 

demand for the near future. This prediction has a 

direct impact on the operation of the electricity 

market, generation scheduling, grid stability, and 

economy. 

The methods for short-term load 

forecasting mainly include statistical models, time 

series analysis, and machine learning. Statistical 

modeling methods use the statistical characteristics 

of historical load data for prediction. The moving 

average method, exponential smoothing method, 

etc. are simple and easy to use but have poor 

adaptability to complex load patterns[1]. 

The time series analysis method considers 

the time dependence of load data, such as the 

autoregressive moving average model (ARMA), 

autoregressive integral moving average model 

(ARIMA)[2], etc. These models can capture the 

dynamic changes in load data but have a weaker 

ability to handle nonlinear relationships[3]. In recent 

years, prediction methods based on artificial 

intelligence and machine learning have been widely 

applied. Machine learning methods include artificial 

neural networks (ANN)[4], support vector 

regression (SVR)[5], Kalman filtering method[6], 

extreme learning machine (ELM)[7], etc. These 

methods can handle complex nonlinear relationships 

and high-dimensional data, thereby improving 

prediction accuracy.[8,9] 

Although significant progress has been 

made in the research of short-term load forecasting, 

there are still some challenges. One of the most 

significant challenges is the widespread chaotic 

characteristics of power grid loads. Therefore, it is 

necessary to explore more accurate and robust 

prediction methods, such as deep learning methods 

that consider the chaotic characteristics of power 

grid loads to improve prediction performance. 

 

II. MATERIALS AND METHODS 
2.1 Phase space reconstruction 

The method of chaos prediction involves 

finding a nonlinear model that can approximate the 

dynamic characteristics of the system and predict its 

behavior for a certain period of time. This process 

does not require a specific model to be set, nor does 

it need to consider factors that affect load or 

establish a holiday load model or different models 

for different user types. Instead, it relies on the self-

similarity of chaos itself at different levels and uses 

phase space reconstruction to restore the multi-

dimensional chaotic system of the original power 

system in actual load data[10].  

According to the Takens embedding 

theorem, chaotic time series can be reconstructed 

into multiple vectors with an m-dimensional delay 

time t, and its main conditional parameters are the 

embedding dimension m and delay time t. By 

extending the original system to a high-dimensional 

phase space, the embedding dimensions present the 

hidden information features of nonlinear systems in 

another intuitive way.  

To initiate chaos prediction, the chaotic 

time series (load time series) must first be recorded. 

Next, the embedding dimension m and delay time t 
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can be selected, and the phase space can be shown 

using formula 1. 
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Where  1,2, , 1k n m    . 

The sample data is created by selecting the 

first  data points from the trajectory 

matrix. Each row of the trajectory matrix is used as 

input for the prediction model, and the data 

immediately following that row is used as the 

output. These inputs and outputs make up the 

samples that form the prediction model. 

2.2 Simple Recurrent Unit (SRU)  
The Simple Recurrent Unit (SRU) is a 

variant of Recurrent Neural Networks (RNN) that 

has a simpler architecture designed to speed up the 

training process[11]. Unlike other RNN variants 

such as LSTM and GRU, SRU has a faster training 

speed due to its unique structure. The basic 

architecture of SRU consists of two components, 

"light recurrence" and "highway network," as shown 

in Figure 1. The light recurrence component reads 

the input vector xt and calculates the state sequence 

ct, which captures the sequential information. The 

light recurrent procedure can be summarized using 

the following equations: 

 
Fig. 1. The structure of the Simple Recurrent Unit (SRU) 
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Where, Wf, W, and bf are the parameter matrices, 

which will be determined through the training 

process. ()  is a sigmoid function and the ft is the 

output of this function ranging from 0 to 1.  is the 

Kronecker product operation. 

The SRU consists of two parts, one of 

which is the highway network. Its primary objective 

is to facilitate the gradient-based training of deep 

networks. To accomplish this, a reset gate rt is used 

to combine the input vector xt and the current state 

ct from the light recurrence. The equations for the 

highway network can be formulated as follows: 

)( rttt bxWr 
                       (5) 

ttttt xrcgrh  )1()(
            (6) 

Where Wr and br are also the parameters learned by 

the training procedure. Especially,  is a 

skip connection allows the gradient to directly 

propagate to the previous layer, which has been 

shown to improve the scalability. 

 

2.3 Calculation of Time Delay and Embedding 

Dimension 

The selection of embedding dimension and 

delay parameters is critical in reconstructing phase 

space and requires careful consideration. The 

embedding theorem involves projecting the phase 

space of a system onto the embedding space. If the 

embedding dimension is too small, the phase space 

trajectory will be projected onto a lower 

dimensional space, leading to many erroneous 

intersections. An increase in embedding dimension 

will decrease the number of inaccurate crossings. 

However, if the embedding dimension is too large, 

noise in the observation data will occupy most of the 

embedding space, while the system attractor will 

only occupy a small part, masking important 

information with noise. Moreover, a larger 

embedding dimension also leads to greater 

computational complexity. Currently, there is no 

unified algorithm for selecting these two parameters. 

Two main views exist on the selection of embedding 

dimension and delay parameters. One view is that 

the two are unrelated, while the other suggests that 

the selection of one parameter is dependent on the 

other. Several methods have been developed to 

select embedding dimensions and delay parameters 

for both perspectives. The primary methods for 

selecting embedding dimensions include the 

correlation dimension method, the Cao method, and 
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the false nearest neighbor method. The primary 

methods for selecting delay parameters include the 

autocorrelation function method, the C-C method, 

and the mutual information method. In this paper, 

the C-C method is chosen to select the embedding 

dimension and delay parameters for sequence phase 

space reconstruction. 

 

III. SIMULATION 
In this section, we will be using the power 

grid load in Hubei Province as an example for our 

research. Hubei Province is situated in central China 

and is located north of Dongting Lake in the middle 

reaches of the Yangtze River. It has a total area of 

185900 square kilometers and a permanent 

population of nearly 60 million.  

To begin with, we will be using the C-C 

method to determine the delay parameters of the 

time series. We will be selecting different sequence 

lengths and calculating the time delay, as shown in 

the figure. 

. 

 

 

 
  Fig. 2. Using the c-c method to determine the optimal embedding window 

 

Table 1. Calculation results of time delay corresponding to different time series lengths 

Sequence length (t) 1416 2880 4344 5832 7296 8760 

Time delay (τ) 6 6 6 6 6 6 

 

After analyzing the time delays 

corresponding to different sequence lengths, it was 

discovered that the length of the sequence has little 

effect on the time delay. The relationship between 

them is shown in Table 1. Therefore, the time delay 

t=6. From Figure 2, it can be observed that the 

embedding window and the embedding dimension 

m=5 are obtained using the formula.  

Next, the model is trained using the data 

from April 16, 2012, to April 16, 2015, as the 

training set. The test set consists of the load data of 

Hubei Province's power grid on April 17, 2015. The 

goal is to analyze the predictive performance of the 

model. 
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Fig. 3. Comparison chart and error distribution chart of load forecasting results 

 

Table 2. Table of load forecasting results and relative error 

Time Real(MW) Forecast(MW) 
Relative 

Error 
Time Real(MW) Forecast(MW) 

Relative 

Error 

0 14386 14299 0.006 12 16181 16780 0.037 

1 14094 14235 0.010 13 16381 16794 0.025 

2 13923 14058 0.010 14 16531 16761 0.014 

3 13747 13910 0.012 15 16700 16873 0.010 

4 13727 14090 0.026 16 17058 17068 0.001 

5 14179 14657 0.034 17 17107 17162 0.003 

6 15636 15946 0.020 18 16547 17297 0.045 

7 16834 17010 0.010 19 17231 16911 0.019 

8 17536 17578 0.002 20 17025 16260 0.045 

9 17705 17675 0.002 21 16020 15695 0.020 

10 17135 17331 0.011 22 15713 15219 0.031 

11 16922 17109 0.011 23 14767 14591 0.012 

average 0.017 

 

 

From Figure 3 and Table 2, it can be seen 

that the model has good fitting performance, with 

an average relative error of 0.017, achieving good 

predictive performance. It is evident that traditional 

power load forecasting models typically use 

statistical methods to establish the mapping 

relationship directly between historical sequences 

and predicted values. These methods do not take 

into account the laws of short-term load changes in 

the power grid. However, after phase space 

reconstruction, the intrinsic regularity of power 

load data can be discovered. This regularity is a 

non-linear mapping that can be described, and the 

model proposed in this article can reflect this non-

linear mapping relationship accurately, thus 

achieving high prediction accuracy. 

IV. CONCLUSION 
This article proposes a short-term load forecasting 

model based on a chaotic SRU neural network 

model that combines chaotic phase space 

reconstruction with an SRU deep neural network to 

achieve short-term load forecasting. The article 

uses Hubei Province as an example to analyze the 

load forecasting results of Hubei Province. In the 

case study of power grid load forecasting on April 

17, 2015, the proposed model's relative error was 

0.017, indicating that the model has a high fitting 

effect. The model proposed in this article has 

practical value in improving the short-term load 

forecasting of the power grid. 
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